103 research outputs found

    A Study of Metrics of Distance and Correlation Between Ranked Lists for Compositionality Detection

    Full text link
    Compositionality in language refers to how much the meaning of some phrase can be decomposed into the meaning of its constituents and the way these constituents are combined. Based on the premise that substitution by synonyms is meaning-preserving, compositionality can be approximated as the semantic similarity between a phrase and a version of that phrase where words have been replaced by their synonyms. Different ways of representing such phrases exist (e.g., vectors [1] or language models [2]), and the choice of representation affects the measurement of semantic similarity. We propose a new compositionality detection method that represents phrases as ranked lists of term weights. Our method approximates the semantic similarity between two ranked list representations using a range of well-known distance and correlation metrics. In contrast to most state-of-the-art approaches in compositionality detection, our method is completely unsupervised. Experiments with a publicly available dataset of 1048 human-annotated phrases shows that, compared to strong supervised baselines, our approach provides superior measurement of compositionality using any of the distance and correlation metrics considered

    Rhetorical relations for information retrieval

    Full text link
    Typically, every part in most coherent text has some plausible reason for its presence, some function that it performs to the overall semantics of the text. Rhetorical relations, e.g. contrast, cause, explanation, describe how the parts of a text are linked to each other. Knowledge about this socalled discourse structure has been applied successfully to several natural language processing tasks. This work studies the use of rhetorical relations for Information Retrieval (IR): Is there a correlation between certain rhetorical relations and retrieval performance? Can knowledge about a document's rhetorical relations be useful to IR? We present a language model modification that considers rhetorical relations when estimating the relevance of a document to a query. Empirical evaluation of different versions of our model on TREC settings shows that certain rhetorical relations can benefit retrieval effectiveness notably (> 10% in mean average precision over a state-of-the-art baseline)

    Preliminary Experiments using Subjective Logic for the Polyrepresentation of Information Needs

    Full text link
    According to the principle of polyrepresentation, retrieval accuracy may improve through the combination of multiple and diverse information object representations about e.g. the context of the user, the information sought, or the retrieval system. Recently, the principle of polyrepresentation was mathematically expressed using subjective logic, where the potential suitability of each representation for improving retrieval performance was formalised through degrees of belief and uncertainty. No experimental evidence or practical application has so far validated this model. We extend the work of Lioma et al. (2010), by providing a practical application and analysis of the model. We show how to map the abstract notions of belief and uncertainty to real-life evidence drawn from a retrieval dataset. We also show how to estimate two different types of polyrepresentation assuming either (a) independence or (b) dependence between the information objects that are combined. We focus on the polyrepresentation of different types of context relating to user information needs (i.e. work task, user background knowledge, ideal answer) and show that the subjective logic model can predict their optimal combination prior and independently to the retrieval process

    Fixed versus Dynamic Co-Occurrence Windows in TextRank Term Weights for Information Retrieval

    Full text link
    TextRank is a variant of PageRank typically used in graphs that represent documents, and where vertices denote terms and edges denote relations between terms. Quite often the relation between terms is simple term co-occurrence within a fixed window of k terms. The output of TextRank when applied iteratively is a score for each vertex, i.e. a term weight, that can be used for information retrieval (IR) just like conventional term frequency based term weights. So far, when computing TextRank term weights over co- occurrence graphs, the window of term co-occurrence is al- ways ?xed. This work departs from this, and considers dy- namically adjusted windows of term co-occurrence that fol- low the document structure on a sentence- and paragraph- level. The resulting TextRank term weights are used in a ranking function that re-ranks 1000 initially returned search results in order to improve the precision of the ranking. Ex- periments with two IR collections show that adjusting the vicinity of term co-occurrence when computing TextRank term weights can lead to gains in early precision

    Evaluation Measures for Relevance and Credibility in Ranked Lists

    Full text link
    Recent discussions on alternative facts, fake news, and post truth politics have motivated research on creating technologies that allow people not only to access information, but also to assess the credibility of the information presented to them by information retrieval systems. Whereas technology is in place for filtering information according to relevance and/or credibility, no single measure currently exists for evaluating the accuracy or precision (and more generally effectiveness) of both the relevance and the credibility of retrieved results. One obvious way of doing so is to measure relevance and credibility effectiveness separately, and then consolidate the two measures into one. There at least two problems with such an approach: (I) it is not certain that the same criteria are applied to the evaluation of both relevance and credibility (and applying different criteria introduces bias to the evaluation); (II) many more and richer measures exist for assessing relevance effectiveness than for assessing credibility effectiveness (hence risking further bias). Motivated by the above, we present two novel types of evaluation measures that are designed to measure the effectiveness of both relevance and credibility in ranked lists of retrieval results. Experimental evaluation on a small human-annotated dataset (that we make freely available to the research community) shows that our measures are expressive and intuitive in their interpretation

    Preliminary study of technical terminology for the retrieval of scientific book metadata records

    Get PDF
    Books only represented by brief metadata (book records) are particularly hard to retrieve. One way of improving their retrieval is by extracting retrieval enhancing features from them. This work focusses on scientific (physics) book records. We ask if their technical terminology can be used as a retrieval enhancing feature. A study of 18,443 book records shows a strong correlation between their technical terminology and their likelihood of relevance. Using this finding for retrieval yields >+5% precision and recall gains

    Deep Learning Relevance: Creating Relevant Information (as Opposed to Retrieving it)

    Full text link
    What if Information Retrieval (IR) systems did not just retrieve relevant information that is stored in their indices, but could also "understand" it and synthesise it into a single document? We present a preliminary study that makes a first step towards answering this question. Given a query, we train a Recurrent Neural Network (RNN) on existing relevant information to that query. We then use the RNN to "deep learn" a single, synthetic, and we assume, relevant document for that query. We design a crowdsourcing experiment to assess how relevant the "deep learned" document is, compared to existing relevant documents. Users are shown a query and four wordclouds (of three existing relevant documents and our deep learned synthetic document). The synthetic document is ranked on average most relevant of all.Comment: Neu-IR '16 SIGIR Workshop on Neural Information Retrieval, July 21, 2016, Pisa, Ital

    Smart City Analytics: Ensemble-Learned Prediction of Citizen Home Care

    Full text link
    We present an ensemble learning method that predicts large increases in the hours of home care received by citizens. The method is supervised, and uses different ensembles of either linear (logistic regression) or non-linear (random forests) classifiers. Experiments with data available from 2013 to 2017 for every citizen in Copenhagen receiving home care (27,775 citizens) show that prediction can achieve state of the art performance as reported in similar health related domains (AUC=0.715). We further find that competitive results can be obtained by using limited information for training, which is very useful when full records are not accessible or available. Smart city analytics does not necessarily require full city records. To our knowledge this preliminary study is the first to predict large increases in home care for smart city analytics
    corecore